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1
DETECTING ANOMALIES IN POWER
CONSUMPTION OF ELECTRICAL SYSTEMS

BACKGROUND

Electrical systems for various equipment and buildings,
particularly commercial and industrial electrical systems use
large quantities of electrical power. For example, commercial
buildings use a significant amount of energy as part of their
day-to-day operations. It is estimated that commercial build-
ings in the United States alone consumed an estimated 37% of
the total electricity generated in the United States. The elec-
tricity cost for a building operator or tenant of a building is
one of the largest costs associated with the building. The two
primary uses of electricity in commercial buildings are gen-
erally related to lighting and climate control or HVAC.

To reduce energy consumption and avoid unnecessary
expense, operators of electrical systems attempt to be more
energy efficient. For example, building managers employ a
variety of methods and devices to estimate building occu-
pancy, such as timers and motion detectors, and therefore
reduce energy use. To avoid turning off or reducing services
while the building is occupied, timers are typically configured
to reduce lighting and climate control well before or well after
a building is occupied, which minimizes their effectiveness at
reducing energy consumption on a day-to-day basis. In addi-
tion, timers are incapable of adjusting for floating holidays or
other periods of abnormal low building occupancy, unless
specifically programmed by the operator. Motion detectors
solve many of the problems associated with timers, but are
very expensive to install throughout a building and intercon-
nect with a controller, particularly in existing buildings. How-
ever, none of these models identify anomalies in the energy
consumption of the building, especially real time identifica-
tion of anomalies.

Many utilities are installing smart meters in electrical sys-
tems to measure power attributes, such as voltage, current,
power, or any other desirable characteristic. While all of these
meters may record real time energy usage, it is very difficult
for an operator to inspect all of the power related data that is
collected, particularly in real time or as close to real time as
possible to detect anomalies in power consumption. Typi-
cally, it is labor-intensive and therefore an expensive proce-
dure for an electrical system operator, such as a building
administrator, to meticulously go through the vast amount of
power data. Thus, many equipment anomalies and changes in
usage patterns that affect the power consumption of a device
or appliance but do not negatively affect the performance
remain undetected. While computers are well suited to handle
volumes of data that a building administrator cannot, there are
still challenges. The first challenge is the lack of labeled data
to train an algorithm for detecting anomalous behavior.
Obtaining labeled data is an expensive procedure as it usually
requires extensive human interaction.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a power distribution and metering topol-
ogy used in the examples.

FIG. 2 illustrates a comparison of power use and outside
temperature over time for three individual metered buildings
in FIG. 1.

FIG. 3 illustrates a system to detect anomalies in electrical
systems.

FIG. 4 illustrates a block diagram of an example of mod-
ules used to detect anomalies in electrical systems.
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2

FIG. 5 illustrates a flowchart of the method of anomaly
detection.

FIG. 6A illustrates a low dimensional embedding of an
actual power profile on select weekdays for a first meter on a
building, including a normal power profile, a high profile and
a low profile and the plotted output of the method.

FIG. 6B illustrates a low dimensional embedding of an
actual power profile on select weekdays for a second meter on
a building, including a normal power profile, a high profile
and a low profile and the plotted output of the method.

FIG. 6C illustrates a low dimensional embedding of an
actual power profile on select weekdays for a third meter on a
building, including a normal power profile, a high profile and
a low profile and the plotted output of the method.

FIG. 6D illustrates a low dimensional embedding of an
actual power profile on select weekdays for a fourth meter on
a building, including a normal power profile, a high profile
and a low profile and the plotted output of the method.

DETAILED DESCRIPTION

To reduce energy consumption, the method described and
illustrated below reduces anomalies in power consumption of
electrical systems. As further detailed below, and illustrated
in the figures, the method is generally discussed relative to an
example where the method was applied to detect power
anomalies for buildings on a commercial campus, although
the method is applicable to any electrical system to detect
anomalies in the power consumption of that electrical system.
Anomalies may occur from failure of equipment, from faulty
operation of a building, as well as other factors. The method
uses an unsupervised technique that identifies anomalous
usage periods in power consumption time series data. More
specifically, in the method the power time curves of indi-
vidual meters are clustered and the anomalous results lie
outside of the clusters. The method treats the power consump-
tion data over a specified time period (such as a 24 hour
interval) as a single observation. This time resolution may be
specified by the building operator. The power consumption
data collected over several days would then correspond to
multiple observations. The method compares the power usage
behavior between any two observations by computing a dis-
similarity measure. The dissimilarity measure used in the
standard Euclidean distance, which can be computer either in
the time domain or in the frequency domain. In the latter case,
the frequency spectrum of an observation is computed using
a Fast Fourier transform. A dissimilarity matrix is then gen-
erated by computing the dissimilarity values for every pair of
observations. Next a dimensionality reduction algorithm is
used to obtain a low dimensional Euclidean embedding of the
observations. These low dimensional observations are used to
compute the probability score of each observation being
anomalous. The method may be implemented in an on-line
real-time anomaly detection system.

The method of detecting power consumption anomalies in
an electrical system includes monitoring at least one power
meter disposed between a power source, such as an electrical
grid, generator, solar array or any other source of electricity,
and the electrical system which interconnects various items
and equipment requiring electrical power; determining a first
power time series having a first time period from monitoring,
determining a second power time series having a second time
period from monitoring. The first and second time periods are
different and the first power time series is compared with the
second power time series to generate a dissimilarity matrix. A
dimensionality reduction algorithm is then used to obtain a
low dimensional embedding of the dissimilarity matrix. A
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probability score of each of the first and second power time
series being anomalous is calculated.

These principles are discussed herein with respect to
example processes, methods, system, and apparatus, and with
reference to various diagrams. The examples are shown and
described as a series of blocks, but are not limited by this
depiction, as the actions, steps, concepts, and principles asso-
ciated with the illustrated blocks may occur in different orders
than as described, and/or concurrently, and fewer or more
than the illustrated number of blocks may be used to imple-
ment an example method. Blocks may be combined or
include multiple components or steps.

The functional units described herein as steps, methods,
processes, systems, subsystems, routines, modules, and so
forth, may be implemented by a processor or processors
executing software. Executable code may include physical
and/or logical blocks of computer instructions that may be
organized as a procedure, function, and so forth. The
executables associated with an identified process or method
need not be physically collocated, but may include disparate
instructions stored in different locations which, when joined
together, collectively perform the method and/or achieve the
purpose thereof. Executable code may be a single instruction
or many, may be distributed across several different code
segments, among different programs, across several memory
devices, and so forth. Methods may be implemented on a
computer, with the term “computer” referring herein to a
computer or computers and/or a computer network, or other-
wise in hardware, a combination of hardware and software,
and so forth.

Anomaly detection is useful in understanding and manag-
ing power consumption. Anomaly detection is used to detect
any abnormal behavior in the power usage time series. An
anomaly indicates an irregular usage pattern and may not
always correspond to a component failure or faulty operation.
Anomalies generally include irregular power usage resulting
in high power consumption. Any type of electrical system or
size of electrical system may be monitored and may vary from
the electrical system for a single piece of equipment, a plu-
rality of equipment, a building, multiple buildings, city
blocks, neighborhoods and even electrical grids. The method
solves at least two difficulties in performing anomaly detec-
tion. First, power data typically has high dimensionality, spe-
cifically there are now huge amounts of data available from
power meters. For example, if only the power consumption
data is collected every 10 seconds, the resulting data set from
a single meter would be 8,640 samples per meter per day. In
the three buildings illustrated in the example in FIG. 1 with 39
meters, the amount of data available makes it difficult to
manually review and detect any anomalies. Second, there is
typically a lack of labeled data associated with meters. For
large scale campuses having many buildings, each including
multiple meters, it may be difficult to label the individual data
sets. The lack of 1abeled data makes it difficult and expensive
to train an algorithm for detecting anomalous behavior. The
method uses a novel cluster-based unsupervised approach
that detects anomalous points via a low-dimensional embed-
ding of the power data, without the difficulties described
above.

The method allows the input of the power time series
observed by a meter over multiple days, and outputs the
probability of the power consumption behavior being anoma-
lous for desired time periods, each having similar time inter-
vals, such as determining anomalous behavior for individual
days. These probability scores can then be used to generate a
ranked list of the data in the decreasing order of the data point
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4

being anomalous. This ranked list is useful to a building
administrator in prioritizing the data points that need further
inspection.

The method described below is described with reference to
an actual example where the method was applied, and is in no
way limited to the provided example. In the example, as
discussed in greater detail below, and as illustrated in FIG. 1,
a power distribution and metering topology for the three
buildings 100, 102, and 103 was monitored to test the method
in detecting anomalies. These three buildings 100, 102, and
103 used in the examples housed a commercial IT infrastruc-
ture, although as stated above, the method could be applied to
any type of electrical system. Power usage and other related
power data from these buildings will be used in the examples
and other FIGS. The power distribution and metering illus-
trated in FIG. 1 is an example of the implementation
described in the examples of where the data was acquired and
any desired configuration or design where the power data is
available to be used in the method as described in more detail
below may be used.

Each of the illustrated buildings 100,102, and 103 included
multiple meters of which only a sample are labeled as 101,
however the others may be easily identified as the “M” within
acircle and any reference to power meters 101 may refer to a
single meter, or any selection of the meters illustrated in FIG.
1. The method allows for any meter configuration including a
single meter, multiple meters, or multiple buildings on a
single meter. The illustrated buildings 100, 102, and 103 in
FIG. 1 have 39 individual power meters 101. The power
meters 101 illustrated in FIG. 1 were already installed at
different locations in the buildings 100, 102, and 103 to
monitor power consumption and allow the utilities to bill for
actual used power. The loads on these meters 101 used in the
examples varied from small loads such as overhead lighting
on one meter to large loads such as power consumption at an
entire building level. During testing of the method, the meters
in the examples were not individually labeled, and when any
meters were identified by the method as having anomalous
readings, those meters were then manually labeled to further
analyze the anomalous data points in the power data. The
method was then further validated by comparing the results
obtained to the actual power data.

The meters 101 used in examples for testing and validating
the method were readily available commercial devices. The
meters allowed a set of parameters to be measured from each
meter every ten seconds using the MODBUS over Ethernet
protocol. Of course, depending upon the desired measure-
ments or other parameters, the set measurement time period
may vary, and the methods of communication and tracking
may also vary. The meters 101 used to obtain the data pro-
vided in the examples and in the power usage data in FIG. 2,
were capable of measuring line voltage, real and apparent
power, power factor, current and frequency. The method may
maintain a historical log of power related data by any known
method. Any type of meter that directly or through the use of
other devices allows power usage to be read and input into the
method in specified time increments may be used.

The buildings 100, 102, and 103 are illustrated as being fed
by a single utility feed 104, although other configurations
may be used. FIG. 1 also illustrates an emergency back-up
generator that may not exist in other settings. Building three,
103, in the example had a 135 kW photovoltaic array 105 to
offset power demand during daylight hours, which may or
may not exist in other settings.

The method below is described as the power data being
measured by a single meter, illustrated as 101 in FIG. 1, over
a 24 hour period (i.e., one single day) as one observation or as
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a single power-time curve. Of course, any other desired time
period may be substituted. As mentioned above, due to a lack
of labeled data, the method uses an unsupervised approach
where the power-time curves of each meter are clustered. The
clustering of data points allows normal behavior to be easily
determined and anomalies easily detected. More specifically,
all of the data points that exhibit normal behavior form a tight
cluster and all those points that lie outside this cluster are
highly likely to correspond to an anomalous behavior.

FIG. 2 illustrates the power use and the outside temperature
over a time span of six days as actually measured. The sig-
nificant base load seen in the buildings, even during periods of
low activity, causes disaggregation techniques to not work
well in determining anomalies. As such, the power demand in
the buildings 100, 102, 103 has both a constant (base) and
variable load components. The base load is quite significant,
at about 1.5 MW, which is partially caused by the IT infra-
structure within the buildings. The variable components add
up to about 0.5 MW of demand and show a distinct time of
day pattern. Power demand is lowest during the night and
early morning, and highest during the late morning and after-
noon. FIG. 2 also shows a pronounced day of week behavior,
with weekends (and non-work days in general) being prima-
rily the base load, and work days having the noticeable vari-
able load.

In FIG. 2, the top graph shows the aggregate power con-
sumption of the three buildings, while the middle three graphs
in FIG. 2 show the total power demand for each of Buildings
1(100), 2 (102) and 3 (103), respectively. Building 1 (100) in
the example has a base load of about 0.6 MW, and a peak load
of'nearly 0.9 MW, while Building 2 (102) has a base load of
approximately 0.5 MW, and a peak load up to 0.7 MW.
Building 2 (102) has essentially no variable load on non-work
days. However, there were two large spikes (almost 100 kW)
on Sunday. This sort of behavior seems anomalous and will be
discussed in more detail below. Building 3 (103) has a base
load of almost 0.5 MW and unlike Buildings 1 (100) and 2
(102), Building 3’s (103) variable load is negative, which is
due to the presence of a 135 kW photo-voltaic array installed
on that building. The bottom graph in FIG. 2 shows the
outside temperature. As illustrated in FIG. 2, there is a corre-
lation between outside temperature and power consumption.
In addition, flat consumption on a weekend for the buildings
in the examples was not anomalous.

FIG. 3 illustrates a system having a processor 10, an
anomaly detection program 12 having instructions stored on
a computer readable storage medium 14 to detect anomalies
in the power consumption of an electrical system, such as any
electrical system feeding power to a building, multiple build-
ings or any equipment or electrical devices attached to a
meter. The processor 10 is in communication with power
meters 101, or any device capable of reading power usage of
the meter and providing the data directly or indirectly to the
processor. The processor then outputs an anomaly determi-
nation 16. FIG. 4 illustrates a block diagram of the anomaly
detection program 12. As shown in FIG. 4, the anomaly
detection program includes a monitoring module 30, a deter-
mination module 32, a comparison module 34, a dimension-
ality reduction module 36, and a probability module 38.

In order to compare two power-time curves, the method
quantifies the dissimilarity between two observations. The
method uses standard Euclidean distance measure or the I,
distance between the frequency spectrums of two power-time
curves as a measure of dissimilarity. The frequency spectrum
generally includes two components—magnitude and phase.
The method is restricted to the magnitude of the frequency
spectrum to simplify the method, and the magnitude of the
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6

frequency spectrum contains all the information needed
regarding the power consumption behavior.

FIG. 5 generally shows the method, with the first block 202
being obtaining energy data from a meter and inputting it into
the method. The second block 204 is to impute any missing
data. The third block 206 is to compute the frequency spec-
trum. The fourth block 208 is to compute any dissimilarity.
The fifth block 210 is to low dimensionally embed the data.
The sixth block 212 is to perform k-NN anomaly detection.
The method then outputs a probability score 214.

In regards to the step of missing value imputation 204, a
power-time curve may have some missing values that could
have been caused either due to a hardware or a software
failure. Treating these missing values as zeros will lead to
unnecessarily high frequencies in the frequency spectrum. In
order to avoid this, the method imputes the missing values in
block 204. The imputation strategies may include imputing
with a mean or a median value, imputation using a local or a
weighted global average, imputation using expectation maxi-
mization, and nearest neighbor imputation. Preferably the
method uses a weighted global average strategy to impute
blocks of missing values, while preserving the local structure.
More specifically, let x[n], n=1, . .., N, denote a power-time
curve where N denotes the number of time samples. For any
time index 1=m=N with x[m] missing, its value is imputed
using a weighted global average as given by:

Z wiklx[k]

=

x[m]

where the weights w[k] are chosen such that they decrease as
a function of their distance from the missing value. For
example, the weight function can be chosen to be:

1

:m.

This imputation strategy can be considered to be a temporal
smoothing technique. In the data obtained, less than 3% ofthe
values were missing.

Next, in block 206 computing the frequency spectrum of
the power-time curve is performed after imputing the missing
values in block 204. Given a sequence x[n] forn=1, ..., N, its
frequency spectrum can be computed as:

N
Xk = Z x[n] *exp(_jW]’

n=1

for all 1=k=N.

As noted above, the frequency spectrum is comprised of
two components, magnitude and phase. The method consid-
ers the magnitude of the frequency spectrum as it contains all
the information regarding the total power consumption. The
magnitude of the frequency spectrum is denoted by

Y/k], where Y{kJ=|X[k]|, for k=1, ... ,N.

In the next block 208, the dissimilarity matrix is computed
or determined. In this step, M denotes the total number of
power-time curves being analyzed. In addition, let Y,[k],
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Y,[k], ..., Y, k] denote their respective frequency spectrum
magnitudes. Then, for any two sequences, the distance or
dissimilarity between them is computed using the standard
Euclidean distance measure given by:

where the dissimilarity or the distance matrix A is obtained by
computing the above distance measure for all pairs of
sequences. The above distance measure is commonly referred
to as 1, distance. Alternatively, one could substitute the above
1, distance with other distance measures such as 1,, 1, or L..
However, it was observed through experimental analysis that
1, distance performs better than both 1, and 1. Also, note that
by property of dissimilarity function, the resulting dissimi-
larity matrix A should be symmetric, i.e., A=A~

In the fourth step, 210, low dimension embedding is per-
formed. Given the MxM dissimilarity matrix A, the method
uses a FEuclidean embedding algorithm (also referred to as a
dimensionality reduction algorithm) to obtain a low-dimen-
sional Euclidean embedding of the M observations in a d
dimensional Fuclidean space (i.e., R ¢), where d is usually
chosen to be much smaller than the original dimension N. In
FIG. 6 a low-dimensional embedding of 33 power-time
curves where d=2 is presented.

A Euclidean embedding algorithm finds a set of M points in
R < such that points that are close in the original dimension
are also close in the reduced dimensions, and vice versa.
Examples of standard FEuclidean embedding algorithms
include Multi-dimensional scaling (MDS) and Laplacian
Eigenmaps.

With the low dimensional embedding performed, the last
step 212 is to compute the probability score of each observa-
tion being anomalous. These values are computed through a
k-NN (nearest neighbor) density estimation equation. Note
that a low-dimensional embedding of the power data is cru-
cial for this step, as density estimation is known to perform
poorly in a high dimensional space due to the curse of dimen-
sionality.

For every point yER ¢ in the low dimensional space, the
local density at that point can be estimated as

j‘(y):k/ (Volume of smallest hyper-sphere containing k&
NNs of y),

where k is chosen roughly to be O(M*9), i.e., proportional to
M4 Given the local densities at each of the M observations,
the probability of an observation being an anomaly is com-
puted as

Intuitively, observations that are in a high density region are
less likely to be anomalous and those in low density regions
are more likely to be anomalous, which is captured by the
above expression.

The above described method was performed on the build-
ings shown in FIG. 1, with the results of the method specifi-
cally illustrated in FIG. 2 and Table 1(a). As mentioned ear-
lier, the proposed algorithm outputs a probability score for
each data point being anomalous. These probability scores
can be used to obtain a ranked list of the given data points,
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where the data points that are ranked in the top are more likely
to be anomalous, and the ones in the bottom of the ranked list
are less likely to be anomalous. Table 1(a) below demon-
strates a sample ranked list. Such a ranked list helps a building
administrator prioritize the data points to be inspected for
potential anomalous behavior.

TABLE 1(a)

Data

Point Score
Jul 6 0.99
Jul 7 0.97
Jun 28 0.80
Jun 20 0.75
Jul 8 0.64

The quality of the obtained ranked list determines the qual-
ity of the proposed anomaly detection algorithm. The quality
of the obtained ranked list is measured using the Area under
the ROC (receiver operating characteristic) curve (or AUC) as
the performance measure, which is described in more detail
below.

Given a ranked list, an electrical system operator or admin-
istrator could choose a threshold t and declare the top t data
points as anomalies for further inspection, and the remaining
as normal. The value of t could vary from 0 to the maximum
number of points in the input data. Each choice of t results in
a certain number of false positives and false negatives. For
example, when t=0, i.e., when all the points are declared as
normal, the false positive rate (FPR) is O while the false
negative rate (FNR) will be 1. On the other hand, when the
threshold t is assigned the value equal to the total number of
data points, the associated FPR is 1 and FNR is 0. Varying this
threshold t results in different values of FPR and FNR, lead-
ing to a receiver operating characteristic (ROC) curve. The
area under the ROC curve (AUC) defines the quality of the
obtained ranking. In the ideal case, where all the anomalous
points are ranked at the top followed by normal points, the
AUC takes the maximum value of 1. On the other hand, a
random ranking achieves an AUC value of 0.5. The AUC is
used as a performance metric for the equation. Table 1(b)
below shows the AUC values for the ranked list obtained
using the proposed algorithm on the three meters. These
values verify the accuracy of the algorithm in detecting
anomalies.

TABLE 1(b)
AUC
Meter 1 0.87
Meter 2 0.96
Meter 3 0.99

Furthermore, the present invention characterizes all the
anomalies detected in all the 39 meters by assigning them
categories, as shown in Table 1(c) below. Note that a particu-
lar anomaly could belong to multiple categories.

TABLE 1(c)
Number
of
Anomaly Category anomalies
1 Abnormal high power usage 17
2 Abnormal low power usage 8
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TABLE 1(c)-continued
Number
of
Anomaly Category anomalies
3 Irregular shutdown 4
4 Irregular (time) usage 6
5 Abnormal oscillatory 8
behavior
6 Abnormal drop/rise 13

Some of these categories provide an opportunity for poten-
tial energy savings, while others may indicate device mal-
function or failures. In FIG. 6, four of the above six anomaly
categories are further plotted as (a), (b), (¢), and (d) using the
method, and are hereinafter referred to as FIG. 6(a), FIG.
6(b), FIG. 6(c) and FIG. 6(d).

The scatter plots in FIG. 6 correspond to the low-dimen-
sional embedding of the power data of a given power meter
over six weeks. Each data point in this scatter plot denotes the
power data on one day. The distance between these points
signify how similar/dissimilar the power profiles are on these
days.

FIG. 6(a) corresponds to a meter whose load is primarily
overhead lighting on a floor of the commercial building. The
low-dimensional embedding obtained using MDS shows a
tight cluster of days with normal behavior. Two points lying
outside this cluster were detected as anomalous. The first has
an abnormal low power usage (Category 2 in Table 1(c)), and
this was July 4th, a holiday. The second anomaly belongs to
categories 1 and 4, where the lights remained on all through
the night. This is an example of a potential anomaly (e.g.,
caused by an error in the light control system) that if fixed
could reduce electricity usage and save money for the build-
ing’s operator.

FIG. 6(b) demonstrates another anomalous event, where on
June 23 the air handlers in the building were operating at full
capacity all through the night. This is again a potential
anomaly that if fixed could reduce electricity usage. Simi-
larly, FIG. 6(c) demonstrates a third event on July 6, where the
fans in a building were operating all through the night.

Finally, the example shown in FIG. 6(d) corresponds to a
meter whose load is a chiller. Here, the method detected three
anomalous points corresponding to three consecutive days
where the chiller was abnormally shut down (Category 3 in
Table 1(c)) during business hours. If this was not caused due
to a regular maintenance schedule, it could potentially corre-
spond to a failed component. These experiments verify the
potential of the proposed anomaly detection algorithm in
identifying any abnormal behavior that could have been
caused due to system malfunction or device breakdown.
Therefore, the method has broader applicability than just
building power consumption, as described in the examples.
The method therefore provides an autonomous monitoring of
various items for abnormal failure of components in buildings
that are not commonly monitored.

In summary, the method is able to detect anomalous behav-
ior in power time series data, specifically, to identify irregular
usage patterns that may indicate energy saving opportunities
or equipment failure. This allows an unsupervised cluster-
based method to detect anomalous data points via a low
dimensional embedding of the power data. It takes power
consumption time series at a meter as input, and outputs the
probability of a particular day being anomalous. Therefore,
while the time periods monitored are different, the over time
interval durations may be identical, such as an hour, a day or
a week. In addition, to identify any anomalies, the method
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may use similar measurement periods, such as the time inter-
val being a twelve hour period starting at 6:00 am each day.
Any power time series may be compared with another power
time series, however to identify anomalies the actual time
periods would be different, but of a similar nature, such as the
time intervals used being the same, for example two full days
starting at the same time. The probability scores can be used
to rank the days in terms of anomalousness, providing a
building administrator with a prioritized list of data points
that require further inspection.

The computer-readable storage medium illustrated in FIG.
3 has machine readable instructions that when executed by a
processor cause the processor to monitor at least one power
meter electrically connected to the building. A first power
time series having a first time period, and a second power time
series having a second time period, each having different time
periods, but similar time intervals are then determined. The
processor compares the first power time series with the sec-
ond power time to generate a dissimilarity matrix. A dimen-
sionality reduction algorithm is applied to the dissimilarity
matrix to obtain a low dimensional embedding of the dissimi-
larity matrix. The processor then determines a probability
score of each of the first and second power time series being
anomalous.

We claim:

1. A method of detecting power consumption anomalies in
an electrical system comprising:

determining a power time series from monitoring at least

one power meter electrically connected to the electrical
system,

determining a first power time period and creating a first

power time curve for power data from the power time
series;

determining a second power time period and creating a

second power time curve for power data from the power
time series, wherein the first and second power time
periods are different;

comparing power data in the first power time curve for the

first power time period with power data in the second
power time curve for the second power time period to
create a clustering of power data in the compared power
time periods;

generating a dissimilarity matrix from the clustering of

power data in the compared power time periods;

applying a dimensionality reduction algorithm to obtain a

low dimensional embedding of the dissimilarity matrix;
and

using the low dimensional embedding of the dissimilarity

matrix to perform a density estimation on the clustering
of power data in the compared power time periods in
order to compute a probability score of power consump-
tion in each of the first power time period and the second
power time period being anomalous.

2. The method of claim 1, wherein monitoring at least one
power meter electrically connected to the electrical system
includes collecting power usage data at specified intervals.

3. The method of claim 1 wherein the first power time
period and the at least one additional power time period each
cover approximately the same time interval.

4. The method of claim 1 including imputation of any
missing values in the first power time period and the second
power time period before comparing the first power time
period with the second power time period.

5. The method of claim 4 wherein imputation of any miss-
ing values includes imputing a value using one of a mean
value, a median value, a local weighted average, a global
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average, a nearest neighbor value, and a weighted average of
the two nearest neighbor values.

6. The method of claim 1 further including determining the
magnitude of the frequency spectrum for each of the power
time periods.

7. The method of claim 6 wherein the magnitude of the
frequency spectrum is used in comparing the first power time
period with the second power time period to generate the
dissimilarity matrix.

8. The method of claim 7 wherein in comparing the first
power time period with the second power time period to
generate the dissimilarity matrix, the dissimilarity is com-
puted using standard Euclidean distance measure.

9. The method of claim 8 wherein the dissimilarity matrix
in comparing the first power time period with the second
power time period to generate the dissimilarity matrix is
obtained by computing the distance measure for all pairs of
sequences.

10. The method of claim 8 further including verifying the
dissimilarity matrix is approximately symmetric.

11. The method of claim 1 wherein applying a dimension-
ality reduction algorithm to obtain embedding of the dissimi-
larity matrix further includes using Euclidean embedding
algorithms selected from the group of multi-dimensional
scaling and laplacian algorithms.

12. The method of claim 1 wherein computing a probabil-
ity score of each of the first power time period and the second
power time period being anomalous includes using a density
estimation algorithm to determine low density regions.

13. A method of detecting power consumption anomalies
in an electrical system comprising:

determining a power time series from monitoring at least

one power meter connected to the electrical system;
determining a first power time period having a first time
interval and collected power data;

determining additional power time periods having col-

lected power data and having time period differing from
the first time period and time intervals similar to the first
time interval from the power time series;

determining any missing power data values in the first

power time period and any additional power time peri-
ods and imputing any missing power data values;
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determining the magnitude of the frequency spectrum for
the power data in the first power time period and the
additional power time periods;
comparing the magnitude of the frequency spectrum for
the power data in the first power time period with the
magnitude for the power data in the additional power
time periods at specified sequence intervals to create a
clustering of power data in the compared time periods;

generating a dissimilarity matrix from the clustering of
power data in the compared power time periods;

applying a dimensionality reduction algorithm to obtain a

low dimensional embedding of the dissimilarity matrix;
and

using the low dimensional embedding of the dissimilarity

matrix to perform a density estimation on the clustering
of power data in the compared time periods in order to
compute a probability score of power consumption in
the first time period and the additional time periods
being anomalous.

14. A non-transitory computer-readable storage medium
having machine readable instructions that when executed by
a processor cause the processor to:

determine a power time series from monitoring at least one

power meter connected to the electrical system;
determine a first power time period having a first time
interval and collected power data;

determine a second power time period having a second

time interval and collected power data and wherein the
first and second time periods are different;

compare power data of the first power time period with

power data of the second power time period to create a
clustering of power data in the compared power time
periods;

generate a dissimilarity matrix from the clustering of

power data in the compared power time periods;

apply a dimensionality reduction algorithm to obtain a low

dimensional embedding of the dissimilarity matrix in
the clustering of power data; and

using the low dimensional embedding of the dissimilarity

matrix to perform a density calculation on the clustering
of power data in order to compute a probability score of
power consumption in each of the first and second power
time periods being anomalous.
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